	Alternative method 1		
	$(\sin 30^\circ =) \frac{1}{2}$		may be seen beside question
	or $(\cos 30^{\circ} =) \frac{\sqrt{3}}{2}$ or $(\tan 30^{\circ} =) \frac{1}{\sqrt{3}}$ or $\frac{\sqrt{3}}{3}$	M1	
	or $\left(\frac{1}{2}\right)$		
	$5\left(\frac{1}{2}\right) \times \frac{\sqrt{3}}{2} \times 8\left(\frac{1}{\sqrt{3}}\right)$		oe
	(10)		multiplication string with all correct values
1	or $5\left(\frac{1}{2}\right) \times \frac{\sqrt{3}}{2} \times 8\left(\frac{\frac{1}{2}}{\sqrt{3}}\right)$	M1dep	
	or $\frac{5}{2} \times \frac{\sqrt{3}}{2} \times \frac{8\sqrt{3}}{3}$		
	$\frac{40\sqrt{3}}{4\sqrt{3}}$ or $\frac{40\sqrt{3}\sqrt{3}}{12}$	M1dep	oe single fraction with roots rationalised or able to be cancelled
	10 from correct working	A1	
	Alternative method 2: substituting	sin cos	an and cancelling
	$5\sin 30^{\circ} \times \cos 30^{\circ} \times 8 \frac{\sin 30^{\circ}}{\cos 30^{\circ}}$	M1	
	40sin ² 30°	M1dep	oe cancels cos 30°
	$40\left(\frac{1}{2}\right)^2$	M1dep	oe
	10 from correct working	A1	

Question	Answer	Mark	Comments		
	Alternative method 1				
	$\sin 30 = \frac{x}{10}$ or $(x =) 10 \sin 30$	M1	$ext{oe eg} \frac{x}{\sin 30} = \frac{10}{\sin 90}$		
	sin 30 = 0.5	M1	oe may be seen in a table $0.5 = \frac{x}{10} \text{ oe scores M1M1}$		
•	5	A1			
2	Alternative method 2				
	Correct trigonometric method to show that the length of the missing side is $5\sqrt{3}$	M1	oe		
	$\sqrt{(5\sqrt{3})^2 + x^2} = 10$	M1dep	oe		
	5	A1			
	Additional Guidance				
	Accept use of cos 60 instead of sin 3	0			

Q	Answer	Mark	Comme	nt
	$(\cos 30 =) \frac{\sqrt{3}}{2}$ or $(\sin 45 =) \frac{\sqrt{2}}{2}$ or $\frac{1}{\sqrt{2}}$ or $(\tan 60 =) \sqrt{3}$	M1	oe correct trig function i by position in multiplicati may be seen in a table	
	$\left(\frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{2} \times \sqrt{3}\right)^{2}$ or $\left(\frac{\sqrt{3}}{2}\right)^{2} \times \left(\frac{\sqrt{2}}{2}\right)^{2} \times \left(\sqrt{3}\right)^{2}$ or or	M1dep	oe with all values correc	t
	$\frac{3\sqrt{2}}{4}$ or $\frac{3}{2\sqrt{2}}$ or $\frac{\sqrt{18}}{4}$		oe single term not squar	red
3	$\left(\frac{3\sqrt{2}}{4}\right)^2$ or $\left(\frac{3}{2\sqrt{2}}\right)^2$ or $\left(\frac{\sqrt{18}}{4}\right)^2$		oe with all values correct oe single term squared	t
	or $\frac{3}{4} \times \frac{1}{2} \times 3$ or	M1dep	oe multiplication string w	rithout surds
	$\frac{\sqrt{324}}{16}$		oe single fraction with or	ne surd
	$\frac{9}{8}$ or $1\frac{1}{8}$ or 1.125	A1	oe fraction, mixed numb	er or decimal
	Additional Guidance			
	Ignore an incorrect attempt to simplify or convert a correct answer			
	eg $\frac{9}{8} = 1.8$			M1M1M1A1

Q	Answer	Mark	Comments	
	Alternative method 1			
	tan identified	M1	oe eg tan ⁻¹	
	$\tan x = \frac{10}{4} \text{or} \ \tan x = \frac{5}{2}$	M1dep	oe eg tan ⁻¹ 10/4	
	or $\tan x = 2.5$	Миср	or $90 - \tan^{-1} \frac{4}{10}$	
	[68, 68.2]	A1	SC1 [21.8, 22]	
	Alternative method 2			
	$\sin x = \frac{10}{\sqrt{4^2 + 10^2}}$		oe eg sin $x = \frac{10}{\sqrt{116}}$	
	or $\cos x = \frac{4}{\sqrt{A^2 + 10^2}}$	M2	or $\sin^{-1} \frac{10}{\sqrt{4^2 + 10^2}}$	
	$\sqrt{4^2 + 10^2}$		or $\cos x = \frac{4}{\sqrt{116}}$ or \cos^{-1}	$\frac{4}{\sqrt{4^2+10^2}}$
4			or $90 - \sin^{-1} \frac{4}{\sqrt{4^2 + 10^2}}$	
			or $90 - \cos^{-1} \frac{10}{\sqrt{4^2 + 10^2}}$	
	[68, 68.2]	A1	SC1 [21.8, 22]	
	Ad	ditional G	uidance	
	Accept 10.77 or 10.8 or 2√29 for	√ 116		
	Tan can be identified by, for example	e, circling 1	TOA in SOHCAHTOA	
	Answer from accurate drawing			M0M0A0
	$\sin x = \frac{10 \sin 90}{\sqrt{116}}$			M2
	$(x =) \tan 2.5$ or $(x =) \tan 0.4$ or $(x =) \tan \left(\frac{10}{4}\right)^{-1}$ unless recovered			M1M0A0
	$\tan = \frac{10}{4}$ or $\tan = \frac{4}{10}$ or $\tan x = \frac{4}{10}$ with no further correct working			M1M0A0

Q	Answer	Mark	Comments
	$\sin 30 = \frac{1}{2}$ or $\tan 45 = 1$ or $\cos 30 = \frac{\sqrt{3}}{2}$	M1	oe eg tan $45 = \frac{\sqrt{2}}{\sqrt{2}}$ or $4 \sin 30 = 2$ or $2 \cos 30 = \sqrt{3}$ implied by position in the expression may be seen in a table
5	substitution of all three correct values	M1dep	eg $\frac{4 \times \frac{1}{2} - 1}{2 \times \frac{\sqrt{3}}{2}} \text{or} \frac{2 - 1}{2 \times \frac{\sqrt{3}}{2}} \text{or} \frac{2 - 1}{\sqrt{3}}$
5	$\frac{1}{\sqrt{3}}$ or $\frac{\sqrt{3}}{3}$	M1dep	
	$(\frac{1}{\sqrt{3}} \text{ or } \frac{\sqrt{3}}{3} =) \tan 30$ or $x = 30$ with full working seen for M3	A1	
	Additional Guidance		
	Allow √1 for 1 throughout		
	Reference to 30° being an acute angle is not required		

Q	Answer	Mark	Comments	
	Alternative method 1 Works out AC and uses it in triangle ABC			
	$\cos 37 = \frac{AC}{4}$	M1	oe eg sin $53 = \frac{AC}{4}$ allow [0.798, 0.8] for cos 37 or sin 53	
	$(AC =) 4 \times \cos 37$ or $(AC =) [3.19, 3.2]$	M1dep	oe eg (AC =) 4 × sin 53 allow [0.798, 0.8] for cos 37 or sin 53 may be seen on diagram	
	$\sin x = \frac{\text{their}[3.19, 3.2]}{9.3}$ or $(x =) \sin^{-1}[0.34, 0.3441]$	M1dep	oe eg cos $x = \frac{\sqrt{9.3^2 - \text{their} [3.19, 3.2]^2}}{9.3}$ or $(x =) 90 - \cos^{-1} [0.34, 0.3441]$	
6	[19.87, 20.13]	A1		
	Alternative method 2 Works out angle ADC and uses it in triangle ABD			
	(angle <i>ADC</i> =) 90 – 37 or (angle <i>ADC</i> =) 53	M1	oe eg (angle <i>ADC</i> =) 180 – 90 – 37 may be seen on diagram	
	$\frac{\sin x}{4} = \frac{\sin (90 - 37)}{9.3}$	M1dep	oe eg $\frac{4}{\sin x} = \frac{9.3}{\sin 53}$	
	$(\sin x =) \frac{\sin(90 - 37)}{9.3} \times 4$	M1dep	oe	
	or $(x =) \sin^{-1}[0.34, 0.3441]$			
	[19.87, 20.13]	A1		

	Additional Guidance					
	Up to M3 may be awarded for correct work with no answer or incorrect answer, even if this is seen amongst multiple attempts					
	Allow any unambiguous notation for angles $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$					
	Alt 1 Allow any unambiguous notation for $AC = gy$ (condone x if clearly referring to AC)					
6 cont	Alt 1 1st M1 must be an equation where AC is the only variable eg $AC^2 + (4 \sin 37)^2 = 4^2$					
	Alt 1 A calculation that leads to AC scores M1M1 $ eg \sqrt{4^2 - (4 \sin 37)^2} $	M1M1				
	Alt 1 3rd M1 must have $\sin x$ (or $\cos x$) as the subject or be a calculation that leads to x					
	Alt 2 53 only marked at angle BAC on diagram	M0				

Q	Answer	Mark	Comment	s
	Alternative method 1 – using tangent of an angle			
	tan chosen or used	M1		
	$\tan 58 = \frac{x}{46}$ or $46 \times \tan 58$	M1dep	oe	
	or $\tan 32 = \frac{46}{x}$ or $\frac{46}{\tan 32}$	шчаср		
	[73.6, 74]	A1		
	Alternative method 2 – finding hyp	otenuse i	first	
7	$\frac{46}{\cos 58}$ or $\frac{46}{\sin 32}$ oe M1 oe or 86.8() or 87			
7	$\sqrt{(\text{their }86.8())^2 - 46^2}$ or $\sqrt{5418.()}$ or their $86.8() \times \sin 58$ or their $86.8() \times \cos 32$	M1dep	oe	
	[73.6, 74]	A1		
	Additional Guidance			
	Do not accept scale drawing			
	Answer 73 after answer in range seen			M1M1A1
	$\frac{\sin 32}{46} = \frac{\sin 58}{x}$			M1

Q	Answer	Mark	Comme	nt	
	Alternative method 1				
	$(\sin 30 =) \frac{1}{2}$ or $(\tan 30 =) \frac{1}{\sqrt{3}}$ or $\frac{\sqrt{3}}{3}$ or $(\cos 30 =) \frac{\sqrt{3}}{2}$	M1	oe may be implied by (4 may be implied by corre multiplication string		
	$4 \times \frac{1}{2} \times \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{2}$	M1dep	oe with all trig values co condone any order unle		
	1 with all three values seen	A1	implied by 90 with all thr	ee values seen	
	90 with M1M1A1 scored	A1	accept any angle of the where n is an integer	form 90 + 360n,	
8	Alternative method 2				
	$4 \times \sin 30^{\circ} \times \frac{\sin 30^{\circ}}{\cos 30^{\circ}} \times \cos 30^{\circ}$	M1			
	$4 \times \frac{1}{2} \times \frac{\frac{1}{2}}{\sqrt{3}/2} \times \frac{\sqrt{3}}{2}$	M1dep	oe eg $4 \times \left(\frac{1}{2}\right)^2$		
	1 with $\frac{\sin 30^{\circ}}{\cos 30^{\circ}}$ and $\frac{1}{2}$ and $\frac{\sqrt{3}}{2}$ seen	A1	if cos 30° is cancelled of be seen	ut only $\frac{1}{2}$ need	
	90 with M1M1A1 scored	A1	accept any angle of the where n is an integer	form 90 + 360 <i>n</i> ,	
	Additional Guidance				
	Condone a square root sign on 1 up	to M1M1			

Q	Answer	Mark	Comments	
	Alternative method 1: substitutes values			
	$(\sin 30^\circ =) \frac{1}{2}$		may be seen beside the given expression or in a table	
	or $6 \sin 30^{\circ} = 3$			
	or			
	$(\cos 30^{\circ} =) \frac{\sqrt{3}}{2}$			
	or $2 \cos 30^{\circ} = \sqrt{3}$	M1		
	or			
	$(\tan 30^\circ =) \frac{1}{\sqrt{3}} \text{ or } \frac{\sqrt{3}}{3}$			
	or $4 \tan 30^{\circ} = \frac{4}{\sqrt{3}}$ or $\frac{4\sqrt{3}}{3}$			
9	$6\left(\frac{1}{2}\right)$ and $2\left(\frac{\sqrt{3}}{2}\right)$ and $4\left(\frac{1}{\sqrt{3}}\right)$		oe	
	or			
	$6\left(\frac{1}{2}\right)$ and $2\left(\frac{\sqrt{3}}{2}\right)$ and $4\left(\frac{\sqrt{3}}{3}\right)$	M1dep		
	or			
	$\frac{6}{2}$ and $\frac{2\sqrt{3}}{2}$ and $\frac{4\sqrt{3}}{3}$			
	Processing at least as far as		oe	
	$\frac{6}{2} + \frac{8\sqrt{3}}{2\sqrt{3}}$			
	or $\frac{6}{2} + \frac{8\sqrt{3}\sqrt{3}}{6}$	M1dep		
	or $\frac{6}{2} + \frac{24}{6}$			
	7 from correct working	A1	SC2 4 + $4\sqrt{3}$ oe	

	Alternative method 2: uses a trig identity			
	$6 \sin 30^{\circ} + 2 \cos 30^{\circ} \times 4 \frac{\sin 30^{\circ}}{\cos 30^{\circ}}$	M1	oe	
	6 sin 30° + 8 sin 30° or 14 sin 30°	M1dep	oe	
9 cont	$14 \times \frac{1}{2}$	M1dep	oe	
	7 from correct working	A1	SC2 4 + 4√3 oe	
	Additional Guidance			
	Alt 2 is not on this specification, but n been studied, eg AQA Certificate – L			
	Incorrect order of operations gives $4 + 4\sqrt{3}$ oe			SC2
	Allow √1 for 1 throughout			